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Journal of Arti�cial Intelligence Research 1 (1993) 1-23 Submitted 5/93; published 8/93A Market-Oriented Programming Environment and itsApplication to Distributed Multicommodity Flow ProblemsMichael P. Wellman wellman@engin.umich.eduUniversity of Michigan, Dept. of Electrical Engineering and Computer Science,Ann Arbor, MI 48109 USA AbstractMarket price systems constitute a well-understood class of mechanisms that undercertain conditions provide e�ective decentralization of decision making with minimal com-munication overhead. In a market-oriented programming approach to distributed problemsolving, we derive the activities and resource allocations for a set of computational agentsby computing the competitive equilibrium of an arti�cial economy. Walras provides basicconstructs for de�ning computational market structures, and protocols for deriving theircorresponding price equilibria. In a particular realization of this approach for a form ofmulticommodity 
ow problem, we see that careful construction of the decision process ac-cording to economic principles can lead to e�cient distributed resource allocation, and thatthe behavior of the system can be meaningfully analyzed in economic terms.1. Distributed Planning and EconomicsIn a distributed or multiagent planning system, the plan for the system as a whole is a com-posite of plans produced by its constituent agents. These plans may interact signi�cantly inboth the resources required by each of the agents' activities (preconditions) and the prod-ucts resulting from these activities (postconditions). Despite these interactions, it is oftenadvantageous or necessary to distribute the planning process because agents are separatedgeographically, have di�erent information, possess distinct capabilities or authority, or havebeen designed and implemented separately. In any case, because each agent has limitedcompetence and awareness of the decisions produced by others, some sort of coordination isrequired to maximize the performance of the overall system. However, allocating resourcesvia central control or extensive communication is deemed infeasible, as it violates whateverconstraints dictated distribution of the planning task in the �rst place.The task facing the designer of a distributed planning system is to de�ne a computa-tionally e�cient coordination mechanism and its realization for a collection of agents. Theagent con�guration may be given, or may itself be a design parameter. By the term agent,I refer to a module that acts within the mechanism according to its own knowledge andinterests. The capabilities of the agents and their organization in an overall decision-makingstructure determine the behavior of the system as a whole. Because it concerns the collec-tive behavior of self-interested decision makers, the design of this decentralized structure isfundamentally an exercise in economics or incentive engineering. The problem of developingarchitectures for distributed planning �ts within the framework of mechanism design (Hur-wicz, 1977; Reiter, 1986), and many ideas and results from economics are directly applicable.In particular, the class of mechanisms based on price systems and competition has beendeeply investigated by economists, who have characterized the conditions for its e�ciencyc
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Wellmanand compatibility with other features of the economy. When applicable, the competitivemechanism achieves coordination with minimal communication requirements (in a precisesense related to the dimensionality of messages transmitted among agents (Reiter, 1986)).The theory of general equilibrium (Hildenbrand & Kirman, 1976) provides the founda-tion for a general approach to the construction of distributed planning systems based onprice mechanisms. In this approach, we regard the constituent planning agents as consumersand producers in an arti�cial economy, and de�ne their individual activities in terms of pro-duction and consumption of commodities. Interactions among agents are cast as exchanges,the terms of which are mediated by the underlying economic mechanism, or protocol. Byspecifying the universe of commodities, the con�guration of agents, and the interactionprotocol, we can achieve a variety of interesting and often e�ective decentralized behaviors.Furthermore, we can apply economic theory to the analysis of alternative architectures, andthus exploit a wealth of existing knowledge in the design of distributed planners.I use the phrase market-oriented programming to refer to the general approach of de-riving solutions to distributed resource allocation problems by computing the competitiveequilibrium of an arti�cial economy.1 In the following, I describe this general approachand a primitive programming environment supporting the speci�cation of computationalmarkets and derivation of equilibrium prices. An example problem in distributed trans-portation planning demonstrates the feasibility of decentralizing a problem with nontrivialinteractions, and the applicability of economic principles to distributed problem solving.2. WALRAS: A Market-Oriented Programming EnvironmentTo explore the use of market mechanisms for the coordination of distributed planning mod-ules, I have developed a prototype environment for specifying and simulating computationalmarkets. The system is called walras, after the 19th-century French economist L�eon Wal-ras, who was the �rst to envision a system of interconnected markets in price equilibrium.Walras provides basic mechanisms implementing various sorts of agents, auctions, andbidding protocols. To specify a computational economy, one de�nes a set of goods andinstantiates a collection of agents that produce or consume those goods. Depending on thecontext, some of the goods or agents may be �xed exogenously, for example, they could cor-respond to real-world goods or agents participating in the planning process. Others mightbe completely arti�cial ones invented by the designer to decentralize the problem-solvingprocess in a particular way. Given a market con�guration, walras then runs these agentsto determine an equilibrium allocation of goods and activities. This distribution of goodsand activities constitutes the market solution to the planning problem.1. The name was inspired by Shoham's use of agent-oriented programming to refer to a specialization ofobject-oriented programming where the entities are described in terms of agent concepts and interactvia speech acts (Shoham, 1993). Market-oriented programming is an analogous specialization, where theentities are economic agents that interact according to market concepts of production and exchange. Thephrase has also been invoked by Lavoie, Baetjer, and Tulloh (1991) to refer to real markets in softwarecomponents. 2
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Market-Oriented Programming2.1 General EquilibriumThe walras framework is patterned directly after general-equilibrium theory. A brief expo-sition, glossing over many �ne points, follows; for elaboration see any text on microeconomictheory (e.g., (Varian, 1984)).We start with k goods and n agents. Agents fall in two general classes. Consumers canbuy, sell, and consume goods, and their preferences for consuming various combinations orbundles of goods are speci�ed by their utility function. If agent i is a consumer, then itsutility function, ui : <k+ ! <, ranks the various bundles of goods according to preference.Consumers may also start with an initial allocation of some goods, termed their endow-ment. Let ei;j denote agent i's endowment of good j, and xi;j the amount of good j that iultimately consumes. The objective of consumer i is to choose a feasible bundle of goods,(xi;1; : : : ; xi;k) (rendered in vector notation as xi), so as to maximize its utility. A bundleis feasible for consumer i if its total cost at the going prices does not exceed the value ofi's endowment at these prices. The consumer's choice can be expressed as the followingconstrained optimization problem:maxxi ui(xi) s.t. p � xi � p � ei; (1)where p = (p1; : : : ; pk) is the vector of prices for the k goods.Agents of the second type, producers, can transform some sorts of goods into someothers, according to their technology. The technology speci�es the feasible combinations ofinputs and outputs for the producer. Let us consider the special case where there is oneoutput good, indexed j, and the remaining goods are potential inputs. In that case, thetechnology for producer i can be described by a production function,yi = �xi;j = fi(xi;1; : : : ; xi;j�1; xi;j+1; : : : ; xi;k);specifying the maximum output producible from the given inputs. (When a good is aninput in its own production, the production function characterizes net output.) In thiscase, the producer's objective is to choose a production plan that maximizes pro�ts subjectto its technology and the going price of its output and input goods. This involves choosing aproduction level, yi, along with the levels of inputs that can produce yi at the minimum cost.Let xi;�| and p�| denote the consumption and prices, respectively, of the input goods. Thenthe corresponding constrained optimization problem is to maximize pro�ts, the di�erencebetween revenues and costs:maxyi �pjyi � �minxi;�| p�| � xi;�| s.t. yi � fi(xi;�|)�� ;or equivalently, minxi p � xi s.t. � xi;j � fi(xi;�|): (2)An agent acts competitively when it takes prices as given, neglecting any impact of itsown behavior on prices. The above formulation implicitly assumes perfect competition, inthat the prices are parameters of the agents' constrained optimization problems. Perfectcompetition realistically re
ects individual rationality when there are numerous agents, eachsmall with respect to the entire economy. Even when this is not the case, however, we can3
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Wellmanimplement competitive behavior in individual agents if we so choose. The implications ofthe restriction to perfect competition are discussed further below.A pair (p;x) of a price vector and vector of demands for each agent constitutes acompetitive equilibrium for the economy if and only if:1. For each agent i, xi is a solution to its constrained optimization problem|(1) or(2)|at prices p, and2. the net amount of each good produced and consumed equals the total endowment,nXi=1 xi;j = nXi=1 ei;j ; for j = 1; : : : ; k: (3)In other words, the total amount consumed equals the total amount produced (countedas negative quantities in the consumption bundles of producers), plus the total amountthe economy started out with (the endowments).Under certain \classical" assumptions (essentially continuity, monotonicity, and concav-ity of the utility and production functions; see, e.g., (Hildenbrand & Kirman, 1976; Varian,1984)), competitive equilibria exist, and are unique given strictness of these conditions.From the perspective of mechanism design, competitive equilibria possess several desirableproperties, in particular, the two fundamental welfare theorems of general equilibrium the-ory: (1) all competitive equilibria are Pareto optimal (no agent can do better without someother doing worse), and (2) any feasible Pareto optimum is a competitive equilibrium forsome initial allocation of the endowments. These properties seem to o�er exactly whatwe need: a bound on the quality of the solution, plus the prospect that we can achievethe most desired behavior by carefully engineering the con�guration of the computationalmarket. Moreover, in equilibrium, the prices re
ect exactly the information required fordistributed agents to optimally evaluate perturbations in their behavior without resortingto communication or reconsideration of their full set of possibilities (Koopmans, 1970).2.2 Computing Competitive EquilibriaCompetitive equilibria are also computable, and algorithms based on �xed-point meth-ods (Scarf, 1984) and optimization techniques (Nagurney, 1993) have been developed. Bothsorts of algorithms in e�ect operate by collecting and solving the simultaneous equilib-rium equations (1), (2), and (3)). Without an expressly distributed formulation, however,these techniques may violate the decentralization considerations underlying our distributedproblem-solving context. This is quite acceptable for the purposes these algorithms wereoriginally designed, namely to analyze existing decentralized structures, such as transporta-tion industries or even entire economies (Shoven & Whalley, 1992). But because our purposeis to implement a distributed system, we must obey computational distributivity constraintsnot relevant to the usual purposes of applied general-equilibrium analysis. In general, ex-plicitly examining the space of commodity bundle allocations in the search for equilibriumundercuts our original motive for decomposing complex activities into consumption andproduction of separate goods. 4
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Market-Oriented ProgrammingAnother important constraint is that internal details of the agents' state (such as utilityor production functions and bidding policy) should be considered private in order to maxi-mize modularity and permit inclusion of agents not under the designers' direct control. Aconsequence of this is that computationally exploiting global properties arising from spe-cial features of agents would not generally be permissible for our purposes. For example,the constraint that pro�ts be zero is a consequence of competitive behavior and constant-returns production technology. Since information about the form of the technology andbidding policy is private to producer agents, it could be considered cheating to embed thezero-pro�t condition into the equilibrium derivation procedure.Walras's procedure is a decentralized relaxation method, akin to the mechanism oftatonnement originally sketched by L�eon Walras to explain how prices might be derived.In the basic tatonnement method, we begin with an initial vector of prices, p0. The agentsdetermine their demands at those prices (by solving their corresponding constrained op-timization problems), and report the quantities demanded to the \auctioneer". Based onthese reports, the auctioneer iteratively adjusts the prices up or down as there is an excessof demand or supply, respectively. For instance, an adjustment proportional to the excesscould be modeled by the di�erence equationpt+1 = pt + �( nXi=1 xi � nXi=1 ei):If the sequence p0;p1; : : : converges, then the excess demand in each market approaches zero,and the result is a competitive equilibrium. It is well known, however, that tatonnementprocesses do not converge to equilibrium in general (Scarf, 1984). The class of economies inwhich tatonnement works are those with so-called stable equilibria (Hicks, 1948). A su�cientcondition for stability is gross substitutability (Arrow & Hurwicz, 1977): that if the pricefor one good rises, then the net demands for the other goods do not decrease. Intuitively,gross substitutability will be violated when there are complementarities in preferences ortechnologies such that reduced consumption for one good will cause reduced consumptionin others as well (Samuelson, 1974).2.3 WALRAS Bidding ProtocolThe method employed by walras successively computes an equilibrium price in each sep-arate market, in a manner detailed below. Like tatonnement, it involves an iterative ad-justment of prices based on reactions of the agents in the market. However, it di�ers fromtraditional tatonnement procedures in that (1) agents submit supply and demand curvesrather than single point quantities for a particular price, and (2) the auction adjusts in-dividual prices to clear, rather than adjusting the entire price vector by some increment(usually a function of summary statistics such as excess demand).2Walras associates an auction with each distinct good. Agents act in the market bysubmitting bids to auctions. In walras, bids specify a correspondence between prices and2. This general approach is called progressive equilibration by Dafermos and Nagurney (1989), who appliedit to a particular transportation network equilibrium problem. Although this model of market dynamicsdoes not appear to have been investigated very extensively in general-equilibrium theory, it does seemto match the kind of price adjustment process envisioned by Hicks in his pioneering study of dynamicsand stability (Hicks, 1948). 5
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Wellmanquantities of the good that the agent o�ers to demand or supply. The bid for a particulargood corresponds to one dimension of the agent's optimal demand, which is parametrizedby the prices for all relevant goods. Let xi(p) be the solution to equation (1) or (2), asappropriate, for prices p. A walras agent bids for good j under the assumption that pricesfor the remaining goods are �xed at their current values, p�|. Formally, agent i's bid forgood j is a function xi;j : <+ ! <, from prices to quantities satisfyingxi;j(pj) = xi(pj ;p�|)j ;where the subscript j on the right-hand side selects the quantity demanded of good j fromthe overall demand vector. The agent computes and sends this function (encoded in any ofa variety of formats) to the auction for good j.Given bids from all interested agents, the auction derives a market-clearing price, atwhich the quantity demanded balances that supplied, within some prespeci�ed tolerance.This clearing price is simply the zero crossing of the aggregate demand function, which is thesum of the demands from all agents. Such a zero crossing will exist as long as the aggregatedemand is su�ciently well-behaved, in particular, if it is continuous and decreasing in price.Gross substitutability, along with the classical conditions for existence of equilibrium, issu�cient to ensure the existence of a clearing price at any stage of the bidding protocol.Walras calculates the zero crossing of the aggregate demand function via binary search.If aggregate demand is not well-behaved, the result of the auction may be a non-clearingprice.When the current price is clearing with respect to the current bids, we say the marketfor that commodity is in equilibrium. We say that an agent is in equilibrium if its set ofoutstanding bids corresponds to the solution of its optimization problem at the going prices.If all the agents and commodity markets are in equilibrium, the allocation of goods dictatedby the auction results is a competitive equilibrium.Figure 1 presents a schematic view of the walras bidding process. There is an auctionfor each distinct good, and for each agent, a link to all auctions in which it has an interest.There is also a \tote board" of current prices, kept up-to-date by the various auctions. Inthe current implementation the tote board is a global data structure, however, since pricechange noti�cations are explicitly transmitted to interested agents, this central informationcould be easily dispensed with.Each agent maintains an agenda of bid tasks, specifying the markets in which it mustupdate its bid or compute a new one. In Figure 1, agent Ai has pending tasks to submitbids to auctions G1, G7, and G4. The bidding process is highly distributed, in that eachagent need communicate directly only with the auctions for the goods of interest (those inthe domain of its utility or production function, or for which it has nonzero endowments).Each of these interactions concerns only a single good; auctions never coordinate with eachother. Agents need not negotiate directly with other agents, nor even know of each other'sexistence.As new bids are received at auction, the previously computed clearing price becomesobsolete. Periodically, each auction computes a new clearing price (if any new or updatedbids have been received) and posts it on the tote board. When a price is updated, thismay invalidate some of an agent's outstanding bids, since these were computed under theassumption that prices for remaining goods were �xed at previous values. On �nding out6
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Market-Oriented Programming
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}Figure 1: Walras's bidding process. Gj denotes the auction for the jth good, and Ai theith trading agent. An item [j] on the task agenda denotes a pending task tocompute and submit a bid for good j.about a price change, an agent augments its task agenda to include the potentially a�ectedbids.At all times, walras maintains a vector of going prices and quantities that would beexchanged at those prices. While the agents have nonempty bid agendas or the auctions newbids, some or all goods may be in disequilibrium. When all auctions clear and all agendasare exhausted, however, the economy is in competitive equilibrium (up to some numerictolerance). Using a recent result of Milgrom and Roberts (1991, Theorem 12), it can beshown that the condition su�cient for convergence of tatonnement|gross substitutability|is also su�cient for convergence of walras's price-adjustment process. The key observationis that in progressive equilibration (synchronous or not) the price at each time is based onsome set of previous supply and demand bids.Although I have no precise results to this e�ect, the computational e�ort required forconvergence to a �xed tolerance seems highly sensitive to the number of goods, and muchless so to the number of agents. Eydeland and Nagurney (1989) have analyzed in detailthe convergence pattern of progressive equilibration algorithms related to walras for par-ticular special cases, and found roughly linear growth in the number of agents. However,general conclusions are di�cult to draw as the cost of computing the equilibrium for a par-ticular computational economy may well depend on the interconnectedness and strength ofinteractions among agents and goods.2.4 Market-Oriented ProgrammingAs described above, walras provides facilities for specifying market con�gurations andcomputing their competitive equilibrium. We can also view walras as a programmingenvironment for decentralized resource allocation procedures. The environment providesconstructs for specifying various sorts of agents and de�ning their interactions via their7
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Wellmanrelations to common commodities. After setting up the initial con�guration, the marketcan be run to determine the equilibrium level of activities and distribution of resourcesthroughout the economy.To cast a distributed planning problem as a market, one needs to identify (1) the goodstraded, (2) the agents trading, and (3) the agents' bidding behavior. These design stepsare serially dependent, as the de�nition of what constitutes an exchangeable or produciblecommodity severely restricts the type of agents that it makes sense to include. And asmentioned above, sometimes we have to take as �xed some real-world agents and goodspresented as part of the problem speci�cation. Once the con�guration is determined, itmight be advantageous to adjust some general parameters of the bidding protocol. Below, Iillustrate the design task with a walras formulation of the multicommodity 
ow problem.2.5 ImplementationWalras is implemented in Common Lisp and the Common Lisp Object System (CLOS).The current version provides basic infrastructure for running computational economies,including the underlying bidding protocol and a library of CLOS classes implementing avariety of agent types. The object-oriented implementation supports incremental develop-ment of market con�gurations. In particular, new types of agents can often be de�ned asslight variations on existing types, for example by modifying isolated features of the demandbehavior, bidding strategies (e.g., management of task agenda), or bid format. Wang andSlagle (1993) present a detailed case for the use of object-oriented languages to representgeneral-equilibrium models. Their proposed system is similar to walras with respect toformulation, although it is designed as an interface to conventional model-solving packages,rather than to support a decentralized computation of equilibrium directly.Although it models a distributed system, walras runs serially on a single processor.Distribution constraints on information and communication are enforced by programmingand speci�cation conventions rather than by fundamental mechanisms of the software en-vironment. Asynchrony is simulated by randomizing the bidding sequences so that agentsare called on unpredictably. Indeed, arti�cial synchronization can lead to an undesirableoscillation in the clearing prices, as agents collectively overcompensate for imbalances inthe preceding iteration.3The current experimental system runs transportation models of the sort described be-low, as well as some abstract exchange and production economies with parametrized utilityand production functions (including the expository examples of Scarf (1984) and Shovenand Whalley (1984)). Customized tuning of the basic bidding protocol has not been nec-essary. In the process of getting walras to run on these examples, I have added somegenerically useful building blocks to the class libraries, but much more is required to �ll outa comprehensive taxonomy of agents, bidding strategies, and auction policies.3. In some formal dynamic models (Huberman, 1988; Kephart, Hogg, & Huberman, 1989), homogeneousagents choose instantaneously optimal policies without accounting for others that are simultaneouslymaking the same choice. Since the value of a particular choice varies inversely with the number of agentschoosing it, this delayed feedback about the others' decisions leads to systematic errors, and henceoscillation. I have also observed this phenomenon empirically in a synchronized version of WALRAS.By eliminating the synchronization, agents tend to work on di�erent markets at any one time, and hencedo not su�er as much from delayed feedback about prices.8
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Market-Oriented Programming3. Example: Multicommodity FlowIn a simple version of the multicommodity 
ow problem, the task is to allocate a givenset of cargo movements over a given transportation network. The transportation networkis a collection of locations, with links (directed edges) identifying feasible transportationoperations. Associated with each link is a speci�cation of the cost of moving cargo along it.We suppose further that the cargo is homogeneous, and that amounts of cargo are arbitrarilydivisible. A movement requirement associates an amount of cargo with an origin-destinationpair. The planning problem is to determine the amount to transport on each link in order tomove all the cargo at the minimum cost. This simpli�cation ignores salient aspects of realtransportation planning. For instance, this model is completely atemporal, and is hencemore suitable for planning steady-state 
ows than for planning dynamic movements.A distributed version of the problem would decentralize the responsibility for trans-porting separate cargo elements. For example, planning modules corresponding to geo-graphically or organizationally disparate units might arrange the transportation for cargowithin their respective spheres of authority. Or decision-making activity might be decom-posed along hierarchical levels of abstraction, gross functional characteristics, or accordingto any other relevant distinction. This decentralization might result from real distributionof authority within a human organization, from inherent informational asymmetries andcommunication barriers, or from modularity imposed to facilitate software engineering.Consider, for example, the abstract transportation network of Figure 2, taken fromHarker (1988). There are four locations, with directed links as shown. Consider two move-ment requirements. The �rst is to transport cargo from location 1 to location 4, and thesecond in the reverse direction. Suppose we wish to decentralize authority so that separateagents (called shippers) decide how to allocate the cargo for each movement. The �rst ship-per decides how to split its cargo units between the paths 1! 2! 4 and 1! 2! 3! 4,while the second �gures the split between paths 4! 2! 1 and 4! 2! 3! 1. Note thatthe latter paths for each shipper share a common resource: the link 2! 3.
1

2

4

3Figure 2: A simple network (from Harker (1988)).Because of their overlapping resource demands, the shippers' decisions appear to benecessarily intertwined. In a congested network, for example, the cost for transporting aunit of cargo over a link is increasing in the overall usage of the link. A shipper planningits cargo movements as if it were the only user on a network would thus underestimate itscosts and potentially misallocate transportation resources.9
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WellmanFor the analysis of networks such as this, transportation researchers have developedequilibrium concepts describing the collective behavior of the shippers. In a system equi-librium, the overall transportation of cargo proceeds as if there were an omniscient centralplanner directing the movement of each shipment so as to minimize the total aggregatecost of meeting the requirements. In a user equilibrium, the overall allocation of cargomovements is such that each shipper minimizes its own total cost, sharing proportionatelythe cost of shared resources. The system equilibrium is thus a global optimum, while theuser equilibrium corresponds to a composition of locally optimal solutions to subproblems.There are also some intermediate possibilities, corresponding to game-theoretic equilibriumconcepts such as the Nash equilibrium, where each shipper behaves optimally given thetransportation policies of the remaining shippers (Harker, 1986).4From our perspective as designer of the distributed planner, we seek a decentralizationmechanism that will reach the system equilibrium, or come as close as possible given thedistributed decision-making structure. In general, however, we cannot expect to derive asystem equilibrium or globally optimal solution without central control. Limits on coordi-nation and communication may prevent the distributed resource allocation from exploitingall opportunities and inhibiting agents from acting at cross purposes. But under certainconditions decision making can indeed be decentralized e�ectively via market mechanisms.General-equilibrium analysis can help us to recognize and take advantage of these opportu-nities.Note that for the multicommodity 
ow problem, there is an e�ective distributed solutiondue to Gallager (1977). One of the market structures described below e�ectively mimics thissolution, even though Gallager's algorithm was not formulated expressly in market terms.The point here is not to crack a hitherto unsolved distributed optimization problem (thoughthat would be nice), but rather to illustrate a general approach on a simply described yetnontrivial task.4. WALRAS Transportation MarketIn this section, I present a series of three transportation market structures implemented inwalras. The �rst and simplest model comprises the basic transportation goods and shipperagents, which are augmented in the succeeding models to include other agent types. Com-parative analysis of the three market structures reveals the qualitatively distinct economicand computational behaviors realized by alternate walras con�gurations.4.1 Basic Shipper ModelThe resource of primary interest in the multicommodity 
ow problem is movement of cargo.Because the value and cost of a cargo movement depends on location, we designate as adistinct good the capacity on each origin-destination pair in the network (see Figure 2). Tocapture the cost or input required to move cargo, we de�ne another good denoting generictransportation resources. In a more concrete model, these might consist of vehicles, fuel,labor, or other factors contributing to transportation.4. In the Nash solution, shippers correctly anticipate the e�ect of their own cargo movements on the averagecost on each link. The resulting equilibrium converges to the user equilibrium as the number of shippersincreases and the e�ect of any individual's behavior on prices diminishes (Haurie & Marcotte, 1985).10
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Market-Oriented ProgrammingTo decentralize the decision making, we identify each movement requirement with adistinct shipper agent. These shippers, or consumers, have an interest in moving variousunits of cargo between speci�ed origins and destinations.The interconnectedness of agents and goods de�nes the market con�guration. Figure 3depicts the walras con�guration for the basic shipper model corresponding to the examplenetwork of Figure 2. In this model there are two shippers, S1;4 and S4;1, where Si;j denotesa shipper with a requirement to move goods from origin i to destination j. Shippers connectto goods that might serve their objectives: in this case, movement along links that belong tosome simple path from the shipper's origin to its destination. In the diagram, Gi;j denotesthe good representing an amount of cargo moved over the link i! j. G0 denotes the specialtransportation resource good. Notice that the only goods of interest to both shippers areG0, for which they both have endowments, and G2;3, transportation on the link servingboth origin-destination pairs.
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Figure 3: Walras basic shipper market con�guration for the example transportation net-work.The model we employ for transportation costs is based on a network with congestion,thus exhibiting diseconomies of scale. In other words, the marginal and average costs (interms of transportation resources required) are both increasing in the level of service on alink. Using Harker's data, we take costs to be quadratic. The quadratic cost model is posedsimply for concreteness, and does not represent any substantive claim about transportationnetworks. The important qualitative feature of this model (and the only one necessaryfor the example to work) is that it exhibits decreasing returns, a de�ning characteristic ofcongested networks. Note also that Harker's model is in terms of monetary costs, whereaswe introduce an abstract input good.Let ci;j(x) denote the cost in transportation resources (good G0) required to transportx units of cargo on the link from i to j. The complete cost functions are:c1;2(x) = c2;1(x) = c2;4(x) = c4;2(x) = x2 + 20x;c3;1(x) = c2;3(x) = c3;4(x) = 2x2 + 5x:Finally, each shipper's objective is to transport 10 units of cargo from its origin to itsdestination. 11
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WellmanIn the basic shipper model, we assume that the shippers pay proportionately (in unitsof G0) for the total cost on each link. This amounts to a policy of average cost pricing.We take the shipper's objective to be to ship as much as possible (up to its movementrequirement) in the least costly manner. Notice that this objective is not expressible interms of the consumer's optimization problem, equation (1), and hence this model is nottechnically an instance of the general-equilibrium framework.Given a network with prices on each link, the cheapest cargo movement corresponds tothe shortest path in the graph, where distances are equated with prices. Thus, for a givenlink, a shipper would prefer to ship its entire quota on the link if it is on the shortest path,and zero otherwise. In the case of ties, it is indi�erent among the possible allocations. Tobid on link i; j, the shipper can derive the threshold price that determines whether the linkis on a shortest path by taking the di�erence in shortest-path distance between the networkswhere link i; j's distance is set to zero and in�nity, respectively.In incrementally changing its bids, the shipper should also consider its outstanding bidsand the current prices. The value of reserving capacity on a particular link is zero if itcannot get service on the other links on the path. Similarly, if it is already committed toshipping cargo on a parallel path, it does not gain by obtaining more capacity (even at alower price) until it withdraws these other bids.5 Therefore, the actual demand policy ofa shipper is to spend its uncommitted income on the potential 
ow increase (derived frommaximum-
ow calculations) it could obtain by purchasing capacity on the given link. It iswilling to spend up to the threshold value of the link, as described above. This determinesone point on its demand curve. If it has some unsatis�ed requirement and uncommittedincome it also indicates a willingness to pay a lower price for a greater amount of capacity.Boundary points such as this serve to bootstrap the economy; from the initial conditions itis typically the case that no individual link contributes to overall 
ow between the shipper'sorigin and destination. Finally, the demand curve is completed by a smoothing operationon these points.Details of the boundary points and smoothing operation are rather arbitrary, and Imake no claim that this particular bidding policy is ideal or guaranteed to work for a broadclass of problems. This crude approach appears su�cient for the present example and somesimilar ones, as long as the shippers' policies become more accurate as the prices approachequilibrium.Walras successfully computes the competitive equilibrium for this example, whichin the case of the basic shipper model corresponds to a user equilibrium (UE) for thetransportation network. In the UE for the example network, each shipper sends 2.86 unitsof cargo over the shared link 2 ! 3, and the remaining cargo over the direct link fromlocation 2 to the destination. This allocation is ine�cient, as its total cost is 1143 resource5. Even if a shipper could simultaneously update its bids in all markets, it would not be a good idea to doso here. A competitive shipper would send all its cargo on the least costly path, neglecting the possibilitythat this demand may increase the prices so that it is no longer cheapest. The outstanding bids providesome sensitivity to this e�ect, as they are functions of price. But they cannot respond to changes inmany prices at once, and thus the policy of updating all bids simultaneously can lead to perpetualoscillation. For example, in the network considered here, the unique competitive equilibrium has eachshipper splitting its cargo between two di�erent paths. Policies allocating all cargo to one path can neverlead to this result, and hence convergence to competitive equilibrium depends on the incrementality ofbidding behavior. 12
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Market-Oriented Programmingunits, which is somewhat greater than the global minimum-cost solution of 1136 units. Ineconomic terms, the cause of the ine�ciency is an externality with respect to usage of theshared link. Because the shippers are e�ectively charged average cost|which in the caseof decreasing returns is below marginal cost|the price they face does not re
ect the fullincremental social cost of additional usage of the resource. In e�ect, incremental usage ofthe resource by one agent is subsidized by the other. The steeper the decreasing returns,the more the agents have an incentive to overutilize the resource.6 This is a simple exampleof the classic tragedy of the commons.The classical remedy to such problems is to internalize the externality by allocatingownership of the shared resource to some decision maker who has the proper incentives touse it e�ciently. We can implement such a solution in walras by augmenting the marketstructure with another type of agent.4.2 Carrier AgentsWe extend the basic shipper model by introducing carriers, agents of type producer whohave the capability to transport cargo units over speci�ed links, given varying amountsof transportation resources. In the model described here, we associate one carrier witheach available link. The production function for each carrier is simply the inverse of thecost function described above. To achieve a global movement of cargo, shippers obtaintransportation services from carriers in exchange for the necessary transportation resources.Let Ci;j denote the carrier that transports cargo from location i to location j. Eachcarrier Ci;j is connected to the auction for Gi;j , its output good, along with G0|its inputin the production process. Shipper agents are also connected to G0, as they are endowedwith transportation resources to exchange for transportation services. Figure 4 depicts thewalras market structure when carriers are included in the economy.
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WellmanIn the case of a decreasing returns technology, the producer's (carrier's) optimizationproblem has a unique solution. The optimal level of activity maximizes revenues minus costs,which occurs at the point where the output price equals marginal cost. Using this result,carriers submit supply bids specifying transportation services as a function of link prices(with resource price �xed), and demand bids specifying required resources as a function ofinput prices (for activity level computed with output price �xed).For example, consider carrier C1;2. At output price p1;2 and input price p0, the carrier'spro�t is p1;2y � p0c1;2(y);where y is the level of service it chooses to supply. Given the cost function above, thisexpression is maximized at y = (p1;2� 20p0)=2p0. Taking p0 as �xed, the carrier submits asupply bid with y a function of p1;2. On the demand side, the carrier takes p1;2 as �xed andsubmits a demand bid for enough good G0 to produce y, where y is treated as a functionof p0.With the revised con�guration and agent behaviors described, walras derives the sys-tem equilibrium (SE), that is, the cargo allocation minimizing overall transportation costs.The derived cargo movements are correct to within 10% in 36 bidding cycles, and to 1%in 72, where in each cycle every agent submits an average of one bid to one auction. Thetotal cost (in units of G0), its division between shippers' expenditures and carriers' pro�ts,and the equilibrium prices are presented in Table 1. Data for the UE solution of the ba-sic shipper model are included for comparison. That the decentralized process produces aglobal optimum is perfectly consistent with competitive behavior|the carriers price theiroutputs at marginal cost, and the technologies are convex.pricing TC expense pro�t p1;2 p2;1 p2;3 p2;4 p3;1 p3;4 p4;2MC (SE) 1136 1514 378 40.0 35.7 22.1 35.7 13.6 13.6 40.0AC (UE) 1143 1143 0 30.0 27.1 16.3 27.1 10.7 10.7 30.0Table 1: Equilibria derived by walras for the transportation example. TC, MC, and ACstand for total, marginal, and average cost, respectively. TC = shipper expense�carrier pro�t.As a simple check on the prices of Table 1, we can verify that p2;3 + p3;4 = p2;4 andp2;3+p3;1 = p2;1. Both these relationships must hold in equilibrium (assuming all links havenonzero movements), else a shipper could reduce its cost by rerouting some cargo. Indeed,for a simple (small and symmetric) example such as this, it is easy to derive the equilibriumanalytically using global equations such as these. But as argued above, it would be improperto exploit these relationships in the implementation of a truly distributed decision process.The lesson from this exercise is that we can achieve qualitatively distinct results by sim-ple variations in the market con�guration or agent policies. From our designers' perspective,we prefer the con�guration that leads to the more transportation-e�cient SE. Examinationof Table 1 reveals that we can achieve this result by allowing the carriers to earn nonzeropro�ts (economically speaking, these are really rents on the �xed factor represented by the14
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Market-Oriented Programmingcongested channel) and redistributing these pro�ts to the shippers to cover their increasedexpenditures. (In the model of general equilibrium with production, consumers own sharesin the producers' pro�ts. This closes the loop so that all value is ultimately realized inconsumption. We can specify these shares as part of the initial con�guration, just like theendowment.) In this example, we distribute the pro�ts evenly between the two shippers.4.3 Arbitrageur AgentsThe preceding results demonstrate that walras can indeed implement a decentralizedsolution to the multicommodity 
ow problem. But the market structure in Figure 4 is notas distributed as it might be, in that (1) all agents are connected to G0, and (2) shippersneed to know about all links potentially serving their origin-destination pair. The �rst ofthese concerns is easily remedied, as the choice of a single transportation resource good wascompletely arbitrary. For example, it would be straightforward to consider some collectionof resources (e.g., fuel, labor, vehicles), and endow each shipper with only subsets of these.The second concern can also be addressed within walras. To do so, we introduce yetanother sort of producer agent. These new agents, called arbitrageurs, act as specializedmiddlemen, monitoring isolated pieces of the network for ine�ciencies. An arbitrageurAi;j;k produces transportation from i to k by buying capacity from i to j and j to k. Itsproduction function simply speci�es that the amount of its output good, Gi;k, is equal tothe minimum of its two inputs, Gi;j and Gj;k. If pi;j + pj;k < pi;k, then its productionis pro�table. Its bidding policy in walras is to increment its level of activity at eachiteration by an amount proportional to its current pro�tability (or decrement proportionalto the loss). Such incremental behavior is necessary for all constant-returns producers inwalras, as the pro�t maximization problem has no interior solution in the linear case.7To incorporate arbitrageurs into the transportation market structure, we �rst create newgoods corresponding to the transitive closure of the transportation network. In the examplenetwork, this leads to goods for every location pair. Next, we add an arbitrageur Ai;j;k forevery triple of locations such that (1) i! j is in the original network, and (2) there exists apath from j to k that does not traverse location i. These two conditions ensure that thereis an arbitrageur Ai;j;k for every pair i; k connected by a path with more than one link, andeliminate some combinations that are either redundant or clearly unpro�table.The revised market structure for the running example is depicted in Figure 5, with newgoods and agents shaded. Some goods and agents that are inactive in the market solutionhave been omitted from the diagram to avoid clutter.Notice that in Figure 5 the connectivity of the shippers has been signi�cantly decreased,as the shippers now need be aware of only the good directly serving their origin-destinationpair. This dramatically simpli�es their bidding problem, as they can avoid all analysis of theprice network. The structure as a whole seems more distributed, as no agent is concernedwith more than three goods.7. Without such a restriction on its bidding behavior, the competitive constant-returns producer wouldchoose to operate at a level of in�nity or zero, depending on whether its activity were pro�table orunpro�table at the going prices (at break-even, the producer is indi�erent among all levels). Thiswould lead to perpetual oscillation, a problem noticed (and solved) by Paul Samuelson in 1949 when heconsidered the use of market mechanisms to solve linear programming problems (Samuelson, 1966).15
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Market-Oriented Programmingmodel goods shippers carriers arbitrageursBasic shipper E + 1 M [O(E)] | |: : :plus carriers E + 1 M [O(E)] E [2] |: : :plus arbitrageurs O(V 2) M [2] E [2] O(VE) [3]Table 2: Numbers of goods and agents for the three market con�gurations. For each type ofagent, the �gure in brackets indicates the number of goods on which each individualbids.structure. I would expect such con�gurations to exhibit behaviors intermediate to thespeci�c models studied here, with respect to both equilibrium produced and degree ofdecentralization.5. LimitationsOne serious limitation of walras is the assumption that agents act competitively. Asmentioned above, this behavior is rational when there are many agents, each small withrespect to the overall economy. However, when an individual agent is large enough to a�ectprices signi�cantly (i.e., possesses market power), it forfeits utility or pro�ts by failing totake this into account. There are two approaches toward alleviating the restriction of perfectcompetition in a computational economy. First, we could simply adopt models of imperfectcompetition, perhaps based on speci�c forms of imperfection (e.g., spatial monopolisticcompetition) or on general game-theoretic models. Second, as architects we can con�gurethe markets to promote competitive behavior. For example, decreasing the agent's grain sizeand enabling free entry of agents should enhance the degree of competition. Perhaps mostinterestingly, by controlling the agents' knowledge of the market structure (via standardinformation-encapsulation techniques), we can degrade their ability to exploit whatevermarket power they possess. Uncertainty has been shown to increase competitiveness amongrisk-averse agents in some formal bidding models (McAfee & McMillan, 1987), and in acomputational environment we have substantial control over this uncertainty.The existence of competitive equilibria and e�cient market allocations also dependscritically on the assumption of nonincreasing returns to scale. Although congestion is areal factor in transportation networks, for example, for many modes of transport thereare often other economies of scale and density that may lead to returns that are increasingoverall (Harker, 1987). Note that strategic interactions, increasing returns, and other factorsdegrading the e�ectiveness of market mechanisms also inhibit decentralization in general,and so would need to be addressed directly in any approach.Having cast walras as a general environment for distributed planning, it is natural toask how universal \market-oriented programming" is as a computational paradigm. We cancharacterize the computational power of this model easily enough, by correspondence to theclass of convex programming problems represented by economies satisfying the classical con-ditions. However, the more interesting issue is how well the conceptual framework of market17
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Wellmanequilibrium corresponds to the salient features of distributed planning problems. Althoughit is too early to make a de�nitive assertion about this, it seems clear that many planningtasks are fundamentally problems in resource allocation, and that the units of distributionoften correspond well with units of agency. Economics has been the most prominent (andarguably the most successful) approach to modeling resource allocation with decentralizeddecision making, and it is reasonable to suppose that the concepts economists �nd usefulin the social context will prove similarly useful in our analogous computational context.Of course, just as economics is not ideal for analyzing all aspects of social interaction, weshould expect that many issues in the organization of distributed planning will not be wellaccounted-for in this framework.Finally, the transportation network model presented here is a highly simpli�ed ver-sion of the actual planning problem for this domain. A more realistic treatment wouldcover multiple commodity types, discrete movements, temporal extent, hierarchical net-work structure, and other critical features of the problem. Some of these may be capturedby incremental extensions to the simple model, perhaps applying elaborations developedby the transportation science community. For example, many transportation models (in-cluding Harker's more elaborate formulation (Harker, 1987)) allow for variable supply anddemand of the commodities and more complex shipper-carrier relationships. Concepts ofspatial price equilibrium, based on markets for commodities in each location, seem to o�erthe most direct approach toward extending the transportation model within walras.6. Related Work6.1 Distributed OptimizationThe techniques and models described here obviously build on much work in economics,transportation science, and operations research. The intended research contribution here isnot to these �elds, but rather in their application to the construction of a computationalframework for decentralized decision making in general. Nevertheless, a few words are inorder regarding the relation of the approach described here to extant methods for distributedoptimization.Although the most elaborate walras model is essentially equivalent to existing algo-rithms for distributed multicommodity 
ow (Bertsekas & Tsitsiklis, 1989; Gallager, 1977),the market framework o�ers an approach toward extensions beyond the strict scope of thisparticular optimization problem. For example, we could reduce the number of arbitrageurs,and while this would eliminate the guarantees of optimality, we might still have a reasonableexpectation for graceful degradation. Similarly, we could realize conceptual extensions tothe structure of the problem, such as distributed production of goods in addition to trans-portation, by adding new types of agents. For any given extension, there may very well bea customized distributed optimization algorithm that would outperform the computationalmarket, but coming up with this algorithm would likely involve a completely new analysis.Nevertheless, it must be stated that speculations regarding the methodological advantagesof the market-oriented framework are indeed just speculations at this point, and the relative
exibility of applications programming in this paradigm must ultimately be demonstratedempirically. 18
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Market-Oriented ProgrammingFinally, there is a large literature on decomposition methods for mathematical program-ming problems, which is perhaps the most common approach to distributed optimization.Many of these techniques can themselves be interpreted in economic terms, using the closerelationship between prices and Lagrange multipliers. Again, the main distinction of theapproach advocated here is conceptual. Rather than taking a global optimization prob-lem and decentralizing it, our aim is to provide a framework for formulating a task in adistributed manner in the �rst place.6.2 Market-Based ComputationThe basic idea of applying economic mechanisms to coordinate distributed problem solvingis not new to the AI community. Starting with the contract net (Davis & Smith, 1983),many have found the metaphor of markets appealing, and have built systems organizedaround markets or market-like mechanisms (Malone, Fikes, Grant, & Howard, 1988). Theoriginal contract net actually did not include any economic notions at all in its biddingmechanism, however, recent work by Sandholm (1993) has shown how cost and price canbe incorporated in the contract net protocol to make it more like a true market mecha-nism. Miller and Drexler (Drexler & Miller, 1988; Miller & Drexler, 1988) have examinedthe market-based approach in depth, presenting some underlying rationale and addressingspeci�c issues salient in a computational environment. Waldspurger, Hogg, Huberman,Kephart, and Stornetta (1992) investigated the concepts further by actually implementingmarket mechanisms to allocate computational resources in a distributed operating system.Researchers in distributed computing (Kurose & Simha, 1989) have also applied specializedalgorithms based on economic analyses to speci�c resource-allocation problems arising indistributed systems. For further remarks on this line of work, see (Wellman, 1991).Recently, Kuwabara and Ishida (1992) have experimented with demand adjustmentmethods for a task very similar to the multicommodity 
ow problem considered here. Onesigni�cant di�erence is that their method would consider each path in the network as aseparate resource, whereas the market structures here manipulate only links or locationpairs. Although they do not cast their system in a competitive-equilibrium framework, theresults are congruent with those obtained by walras.Walras is distinct from these prior e�orts in two primary respects. First, it is con-structed expressly in terms of concepts from general equilibrium theory, to promote math-ematical analysis of the system and facilitate the application of economic principles toarchitectural design. Second, walras is designed to serve as a general programming envi-ronment for implementing computational economies. Although not developed speci�callyto allocate computational resources, there is no reason these could not be included in mar-ket structures con�gured for particular application domains. Indeed, the idea of groundingmeasures of the value of computation in real-world values (e.g., cargo movements) followsnaturally from the general-equilibrium view of interconnected markets, and is one of themore exciting prospects for future applications of walras to distributed problem-solving.Organizational theorists have studied markets as mechanisms for coordinating activitiesand allocating resources within �rms. For example, Malone (1987) models informationrequirements, 
exibility and other performance characteristics of a variety of market andnon-market structures. In his terminology, walras implements a centralized market, where19
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Wellmanthe allocation of each good is mediated by an auction. Using such models, we can determinewhether this gross form of organization is advantageous, given information about the costof communication, the 
exibility of individual modules, and other related features. In thispaper, we examine in greater detail the coordination process in computational markets,elaborating on the criteria for designing decentralized allocation mechanisms. We take thedistributivity constraint as exogenously imposed; when the constraint is relaxable, bothorganizational and economic analysis illuminate the tradeo�s underlying the mechanismdesign problem.Finally, market-oriented programming shares with Shoham's agent-oriented program-ming (Shoham, 1993) the view that distributed problem-solving modules are best designedand understood as rational agents. The two approaches support di�erent agent operations(transactions versus speech acts), adopt di�erent rationality criteria, and emphasize dif-ferent agent descriptors, but are ultimately aimed at achieving the same goal of specifyingcomplex behavior in terms of agent concepts (e.g., belief, desire, capability) and social orga-nizations. Combining individual rationality with laws of social interaction provides perhapsthe most natural approach to generalizing Newell's \knowledge level analysis" idea (Newell,1982) to distributed computation.7. ConclusionIn summary, walras represents a general approach to the construction and analysis ofdistributed planning systems, based on general equilibrium theory and competitive mech-anisms. The approach works by deriving the competitive equilibrium corresponding to aparticular con�guration of agents and commodities, speci�ed using walras's basic con-structs for de�ning computational market structures. In a particular realization of thisapproach for a simpli�ed form of distributed transportation planning, we see that qualita-tive di�erences in economic structure (e.g., cost-sharing among shippers versus ownershipof shared resources by pro�t-maximizing carriers) correspond to qualitatively distinct be-haviors (user versus system equilibrium). This exercise demonstrates that careful design ofthe distributed decision structure according to economic principles can sometimes lead toe�ective decentralization, and that the behaviors of alternative systems can be meaningfullyanalyzed in economic terms.The contribution of the work reported here lies in the idea of market-oriented program-ming, an algorithm for distributed computation of competitive equilibria of computationaleconomies, and an initial illustration of the approach on a simple problem in distributedresource allocation. A great deal of additional work will be required to understand the pre-cise capabilities and limitations of the approach, and to establish a broader methodologyfor con�guration of computational economies.AcknowledgementsThis paper is a revised and extended version of (Wellman, 1992). I have bene�ted fromdiscussions of computational economies with many colleagues, and would like to thank inparticular Jon Doyle, Ed Durfee, Eli Gafni, Daphne Koller, Tracy Mullen, Anna Nagurney,20
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